Uncovering Discrimination Clusters: Quantifying
and Explaining Systematic Fairness Violations

Ranit Debnath Akash
University of Illinois Chicago, USA

Ashish Kumar
Pennsylvania State University, USA

Verya Monjezi
University of Illinois Chicago, USA

rakas@uic.edu azk640@psu.edu vmonj @uic.edu
Ashutosh Trivedi Gang Tan Saeid Tizpaz-Niari
University of Colorado Boulder, USA Pennsylvania State University, USA University of Illinois Chicago, USA
ashutosh.trivedi @colorado.edu gtan@psu.edu saeid @uic.edu

Abstract—Fairness in algorithmic decision-making is often
framed in terms of individual fairness, which requires that similar
individuals receive similar outcomes. A system violates individual
fairness if there exists a pair of inputs differing only in protected
attributes (such as race or gender) that lead to significantly
different outcomes—for example, one favorable and the other
unfavorable. While this notion highlights isolated instances of
unfairness, it fails to capture broader patterns of clustered
discrimination that may affect entire subgroups.

We introduce and motivate the concept of discrimination
clustering, a generalization of individual fairness violations.
Rather than detecting single counterfactual disparities, we seek
to uncover regions of the input space where small perturbations
in protected features lead to k-significantly distinct clusters
of outcomes. That is, for a given input, we identify a local
neighborhood—differing only in protected attributes—whose
members’ outputs separate into many distinct clusters. These
clusters reveal significant arbitrariness in treatment solely based
on protected attributes, exposing patterns of algorithmic bias that
elude pairwise fairness checks.

We present HYFAIR, a hybrid technique that combines formal
symbolic analysis (via SMT and MILP solvers) to certify individ-
ual fairness with randomized search to discover discriminatory
clusters. This combination enables both formal guarantees—
when no counterexamples exist—and the detection of severe viola-
tions that are computationally challenging for symbolic methods
alone. Given a set of inputs exhibiting high k-discrimination,
we further introduce a novel explanation method that generates
interpretable, decision-tree-style artifacts.

Our experiments show that HYFAIR outperforms state-of-the-
art fairness verification and local explanation methods. It reveals
that some benchmarks exhibit substantial discrimination cluster-
ing, while others show limited or no disparities with respect to
protected attributes. It also provides intuitive explanations that
support understanding and mitigation of unfairness.

I. INTRODUCTION

The availability of big data, performant training algorithms,
and specialized hardware has made deep feed-forward neural
networks (DNNs) [1]] a foundational component of modern
software systems. DNNs are now routinely deployed in socio-
economic decision-making tasks, including risk assessment
for criminal reoffense [2]], hiring and recruitment [3]], income
prediction for loans [4], and facial recognition [5]. However,
these models are often opaque and highly non-linear, making
them prone to unjustified disparities—cases where inputs

differing only in protected attributes (e.g., race, gender) yield
significantly different outputs. Such disparities raise serious
concerns about fairness, particularly in high-stakes domains
where automated systems may disproportionately allocate op-
portunities or resources across social groups.

Traditional fairness verification methods [6]], [7]] attempt to
certify the absence of unfairness through exhaustive search,
while fairness testing approaches [8], [9], [1O], [LL]], [12],
[13], [14] rely on randomized exploration to uncover coun-
terexamples. However, verification can be computationally
prohibitive for rich fairness specifications, and testing often
struggles in regions of the input space with low gradient
signals or fairness plateaus. Moreover, most existing work
focuses on isolated violations of individual fairness and fails
to capture broader patterns of systematic bias.

In this work, we propose a new framework for discrimi-
nation clustering, which generalizes individual fairness vio-
lations by uncovering k-significantly distinct clusters of out-
comes within counterfactual neighborhoods—regions of the
input space differing only in protected attributes. Our hybrid
approach, HYFAIR, combines formal symbolic analysis with
randomized search to both certify fairness and quantify the
strength of unfairness. By doing so, we aim not just to detect
fairness violations but to quantify and explain the underlying
systematic disparities that may otherwise remain hidden.

Modeling Fairness Violations. When analyzing decision-
support software through the lens of fairness, it is common
to model such systems as binary classifiers, where outputs are
categorized as either favorable or unfavorable. The features
of inputs under consideration can be partitioned into protected
attributes (e.g., race, gender identity, disability status) and non-
protected attributes (e.g., income, work experience, education
level). Under a standard formulation of equality of opportu-
nity [[15], fairness requires that decision outcomes depend only
on relevant, non-protected features so that similar individuals,
differing only in protected attributes, receive similar outcomes.
This notion underlies the search for individual discrimination
(ID), where an individual and their counterfactual—differing
only in a protected attribute—receive different outcomes. Such

individual fairness violations, also known as discriminatory
instances, have been widely studied [8], [9], [1O], [LL], [12],
particularly in the software testing community. However, this
binary framing overlooks complex patterns of unfairness, such
as when neighborhoods of inputs, differing only in protected
attributes, lead to multiple divergent and arbitrary outcomes.

To capture these richer fairness violations, we propose
a quantitative generalization of counterfactual fairness. We
define a system to be k-discriminant if, within a group of
K counterfactual inputs—records that differ only in protected
attributes—the system produces 2 < k < K distinct outcomes.
Much like how k-means clustering partitions data based on
feature similarity, this formulation identifies clusters of dis-
criminatory behavior: localized regions in the input space
where variations in protected features alone lead to outcome
groupings that are meaningfully separated. We refer to this
phenomenon as discrimination clustering. This notion offers
multiple advantages over prevalent individual discrimination.
While exiting tools can generate hundreds of thousands of IDs,
k-discrimination allows us to prioritize test cases based on the
severity of discrimination. Finding k-discriminants also helps
uncover worst-case scenarios where a DNN makes highly
inconsistent (or arbitrary) decisions for similar individuals
based on their protected attributes. These instances often show
a structured pattern of systematic disparities [L6] that moves
beyond isolated violations of individual fairness.

HYFAIR: Characterizing k-Discriminant Clusters. Given
the pervasiveness of their socio-economic-critical applicabil-
ity, fairness testing and verification for DNNs have received
considerable attention [17)], [18]], [19]], [20]]. Verification ap-
proaches [6], [7], [21] aim to provide a mathematical proof
of fairness through exhaustive exploration, while testing-based
approaches [8], [9], [10], [110, [12], [13], [14] seek to increase
trust by randomized discovery of discrimination-related bugs.
Exhaustive formal search excels at proving the absence of
violations but struggles to scale for complex discrimination
properties, and may generate large volumes of counterexam-
ples, overwhelming human analysts. In contrast, randomized
search scales better but often performs poorly when exploring
flat or low-signal regions of the outcome space.

Both strategies offer complementary strengths. Randomized
approaches scale well and have been effective in uncovering 2-
discriminant instances (individual fairness violations), but they
cannot guarantee the absence of discrimination. As Dijkstra
might put it, testing can show the presence of discrimination,
but never its absence. Meanwhile, the formal methods commu-
nity [6l], [7], [22], [21] has advanced verification approaches
using constraint solvers (e.g., abstract interpretation, SMT) to
exhaustively prove the absence of individual discrimination,
i.e., the lack of 2-discriminant counterfactuals. However, such
approaches face scalability challenges when generalized to
quantitative fairness, such as k-discriminant clusters.

This paper presents HYFAIR, a hybrid approach for the
fairness analysis of DNNs that combines formal verification
with randomized exploration to uncover, quantify, explain,

and mitigate clustered patterns of discrimination. The goal is
to support developers of data-driven software in diagnosing
and addressing fairness violations that arise from significant
arbitrariness in the behavior of DNNs.

Our hybrid approach first uses MILP solvers [6], [23] to
either certify fairness or find counterexamples witnessing 2-
discriminant instances. Our results show that HYFAIR signif-
icantly outperforms FAIRFY [6], the state-of-the-art technique
in terms of finding more individual discrimination instances
quicker (RQ1). It then performs a local randomized search
around these seed counterexamples to identify maximum k-
discriminant clusters, i.e., structured regions in the input space
where protected attribute perturbations lead to multiple distinct
outcomes. We use a simulated annealing search to find inputs
with the maximum k-discrimination that outperforms baseline
randomized search strategies (RQ?2).

HYFAIR: Debugging k-Discriminant Clusters. We next aim
to understand the common conditions underlying the set of
edge-case inputs {aj,...,a;} that witness a k-discriminant
cluster, i.e., a localized region where protected attribute pertur-
bations yield significantly divergent outcomes. While these &
inputs jointly expose a failure of fairness, existing explanation
techniques fall short: differential debugging [24], [25] com-
pares faulty and passing traces pairwise, and eXplainable Al
(XAI) methods [26], [27], [28], [29] typically focus either on
single-instance local explanations or on global approximations
of the model. To address this gap, we introduce a novel
explanation framework tailored to discrimination clustering.
Our method leverages local perturbations and decision tree
learning to uncover logical conditions that are shared across
members of the k-discriminant set. Our experiments show
its efficacy against the baseline XAI methods (RQ3). These
explanations also help mitigate unfairness in the DNNs (RQ4).

Contributions. This paper makes the following contributions.

1) A novel fairness notion, k-discriminant, is introduced to
characterize bias through structured clusters of discrimina-
tory outcomes in deep neural networks.

2) A mixed-integer linear programming (MILP) based ap-
proach is developed to certify individual fairness and guide
targeted randomized search.

3) A novel explainable Al method is proposed that leverages
decision-tree learning and local perturbations to identify
the root causes of k-discriminant clusters.

4) HYFAIR, a hybrid framework, is presented that integrates
formal verification, randomized search, and explanation
techniques to detect, explain, and mitigate discrimination
clustering in DNNss.

II. OVERVIEW

We focus on the notion of individual fairness [1’7l], where
fairness is violated if altering protected attributes, while keep-
ing all other features fixed, changes the machine learning out-
come from favorable to unfavorable (or vice versa). Inspired by
DICE [20], we define a model as k-discriminant (or k-unfair)

Search for Certification or Counterexamples

Debugging K-unfairness

DNN Model

MILP-based Certification imization via Sil

~

Local Exploration Decision Tree Models

Inferring K

Mitigation Rules

No counter-

(V) (Yi.j)) RELU(@/Gx(@)E,) = x(@)]
e example

curSol « Solver(D, Z, X, curSample)
curEval « Eval (curS

cand « ITE(f1ip(p), curSol, Rand(4))
candEval « Eval(cand, Z)

diff curEval - candEval

Counterexample aiff
for 2-Fairness accept_ratio — Exp(~regrry)

20U bx)f, = x()] - s()]
x(v, 0

(Vo) (Vi,)

, - | curEval, curSample « candEval, cand
(Vo) F, = max(x(0)}, x(0)%, ..x(0)§) New Seed Points

if accept_ratio > Unifornsanpling(0, 1) then

—— (z)
(62;)

Prodicate Robust?

cg > 0106 A
hpw < 0.306 A
ms > 0.08

g <0106 A
d <0456 A
hpw < 0.08

X

X, 2)

/

Fig. 1: HYFAIR Framework.

if it produces k£ distinct outcomes for a set of K inputs (k<K)
that differ only in their protected attributes.

Real-world implications and advantages of k-discriminant.
Our proposed generalization from the individual discrimina-
tion notion [30] to k-discriminant acknowledges that fairness is
rarely binary and provides a rigorous mathematical foundation
for evaluating discrimination in complex socio-technological
systems. One key implication is discovering significant “ar-
bitrariness” in decision-making. This notion can reveal when
k similar individuals receive significantly different likelihood
scores, and hence it shows areas where the DNN’s decision-
making becomes highly arbitrary based on protected attributes.
Consider a loan application scenario where an unprivileged
applicant is denied. When k=10, we found cases where ten ap-
plicants with nearly identical qualifications (e.g., credit scores
within 1% range, same income bracket, similar debt ratios)
received vastly different loan approval probabilities based on
their backgrounds. Individual fairness would only compare
pairs and miss this systematic arbitrariness. By identifying
areas of maximum arbitrariness, our explanation technique
can pinpoint the specific combinations of features that trigger
irrational decision-making.

HYFAIR Workflow Summary. Figure [T summarizes the
workflow of HYFAIR. Given a dataset and a pre-trained DNN
model, HYFAIR operates in two phases. In the search phase,
it encodes the DNN as a mixed-integer linear program (MILP)
and verifies it against individual fairness. If a counterexample
is found (a 2-discriminant), HYFAIR initiates a randomized
search—using both random walks and simulated anneal-
ing—to characterize the maximum k-discrimination starting
from the counterexample. HYFAIR alternates between veri-
fication and search, using the MILP solver to generate new
random seeds for the search procedure, helping it escape
potential plateaus in the input space. For example, on the
Adult Census Income dataset [31] (AC2 benchmark with
K = 90), HYFAIR identified 18.6 (+ 6.7) 2-discriminants on
average, while FAIRFY [6] found only 0.6 (&= 0.5). The average
maximum k£ was 17.8 (£ 0.4) for HYFAIR compared to 8.7
(£ 5.4) for FAIRFY. Notably, only 3.8 (+ 2.3) of the 2,245
counterexamples exhibited the maximum k-discrimination of
19, highlighting the rarity and significance of these bugs.

In the debugging step, given a set of inputs that ex-
hibit maximum k-discrimination, we first explore their local
neighborhood via random sampling and query the DNN to
assess how k-discriminant behavior generalizes across nearby
inputs. We then train a decision tree to explain the conditions

under which the DNN exhibits clustered discrimination. The
resulting model yields a set of logical predicates that evaluate
to true when the DNN significantly discriminates.

To understand the causal influence of these predicates, we
evaluate whether flipping the conditions in the explanation
models can reduce the observed k—effectively identifying
input subspaces where mitigating the predicate leads to fairer
behavior. We then use these rules to implement guardrails that
constrain the DNN’s behavior, and we leverage the associated
test cases to fine-tune the model for mitigation. Compared to
LIME [26], HYFAIR provides more robust and succinct expla-
nations with broader input coverage. On the AC-2 benchmark,
our guided mitigation reduced the number of discriminatory
instances from 2,245.0 to 769.6 and lowered the success rate
of fairness bug reproduction from 87.7% to 36.3%.

III. THE DISCRIMINATION CLUSTERING PROBLEM

In this study, we analyze deep neural network classifiers
that have undergone prior training (i.e., pre-trained DNN).

Definition II1.1 (DNN: Interpretation). A deep neural network
(DNN) defines a function F : X x Z — [0,1]%, where X =
X1 x X9 X ...x X, denotes the space of non-protected input
attributes (e.g., occupation, income, education), and Z = Z1 X
Zo X ... X Zp, denotes the space of protected input attributes
(e.g., race, gender, age). The output of F' is a t-dimensional
probability vector over class labels. For any input (x, z), the
predicted class label is given by

Etzbel(xa Z) = arg IHE[i)](F(JT, Z)(Z)
1€t

We assume the domain of the protected attribute space Z is
finite, with K denoting the number of distinct protected groups.

Definition ITL2 (DNN: Structure). A DNN F is defined by
its input dimension n + m, output dimension t, number of
hidden layers N, and weight matrices ©1,0a3,...,0y. We
analyze a pre-trained DNN with fixed parameters and weights
to assess its fairness. For each layer r € {1,...,N}, the
output D, is computed as an affine transformation of the
previous layer’s output D,_1 using weights O, followed by
a non-linear activation. Specifically:
1) For hidden layers 1<r<N, the activation is a ReLU
function, defined as D, = max{©,. - D,_1,0}.
2) For the output layer r = N, a SoftMax function maps the
final linear outputs to a probability distribution over the
t classes.

The term D). denotes the output of neuron j in layer r.

The 2-Discriminant Problem. The prevailing notion of
fairness, e.g., individual discrimination [32[, [10], [L1], re-
quires that similar individuals—who differ only in protected
attributes—receive similar outcomes. Formally, a DNN is said
to be 2-discriminant if there exist two protected attributes
217272 € Z and a shared unprotected input x€X such that:

Dist. (F(z, 21), F(x, 2’2)) > €,

where Dist. measures the deviation between the outputs of
the DNN for inputs differing only in protected attributes, and €
is a specified tolerance threshold. Conversely, we say the DNN
satisfies individual fairness if no such counterexample ex-
ists; that is: Voe€X,Vz, 20€Z,Dist, (F(:L, z1), F(x, zg))ﬁe.
In this case, the DNN is said to be 2-fair, as no pair of
counterfactuals differing only in protected attributes yields an
output difference greater than e.

Search for k-Discrimination. From an Al risk perspective, we
are often required to reason beyond 2-discriminant behavior
and assess the maximum unfairness exhibited by a DNN
model. We say a model is k-discriminant if there exists a
set of K inputs (z, z1), (z, 22), ..., (z, 2K), where all records
share the same non-protected features x € X but differ in
protected attributes z; € Z, and the model produces k£ < K
distinct outputs. Formally:

Jz1,...,2x€Z, x€X s.t. C, (F(x, z1),..., F(z, zK))::k:,

where C.(-) is a clustering function that partitions the outputs
into 1<k<K groups based on an indistinguishability threshold
€. Since the output of F lies in the range [0, 1], the threshold e
can be used to define uniform partitions of the outcome space
for clustering. We note that if the model is 2-fair (i.e., not 2-
discriminant), then it is trivially k-fair for all £ > 2. Otherwise,
once a 2-discriminant counterexample is found, we aim to
compute the maximum value of k-discrimination by solving:

s Ce(F(,21),...,F(x,2K)).

To solve the k-discriminant problem, we construct up to
k+1 copies of the DNN, denoted F = F} x ... X Fj41, where
each copy is evaluated on the same non-protected attributes
but different protected attributes. Verifying fairness at level k
involves checking whether the outputs of these k+1 copies
can be clustered into fewer than k+1 distinct groups. Thus,
increasing values of k require more copies of the model,
making the verification problem increasingly expensive.

While formally verifying the absence of k-discrimination
becomes computationally intractable as k grows, scalable
techniques exist for certifying the 2-discriminant property [6],
[23]. Our key insight is to leverage these solvers not just for
certification, but also as a foundation to guide the quantifica-
tion of the model’s maximum k-discrimination.

Debugging for k-Discrimination. We now turn to understand-
ing the common conditions among edge-case inputs D =
{(z,21),...,(z,zK)} that exhibit significant discriminatory

behavior in a DNN. Since this set collectively witnesses k-
discrimination, standard methods such as differential debug-
ging [24], [25] (comparing faulty vs. passing traces), local
explanations [26] (explaining a single instance), and global
explanation techniques [27] (summarizing model behavior
over the entire input space) fall short in explaining the root
causes of such clustered discrimination.

Our goal is to identify conditions on non-sensitive attributes
under which the model becomes disproportionately sensitive
to protected attributes in its decision-making. The explanation
challenge is to uncover what properties distinguish signifi-
cantly discriminatory instances from benign ones.

s \

Discrimination Clustering Problem. Given a pre-trained
DNN model F' with protected attributes Z (|Z| = K)
and non-protected attributes X, and a formal computational
model of F' that can certify 2-fairness using a distance
relation Dist,, our goal is to:

(1) certify the DNN model F' against 2-fairness property,
(ii) determine the maximum k € [2, K] for which the

model exhibits significant k-discrimination, and

(iii) explain/mitigate the root causes of k-discrimination.

J

IV. HYFAIR FOR DISCRIMINATION ANALYSIS

We note that if no counterexample exists to the 2-fairness
property across all protected attributes, then the DNN is k-fair
for all £>2. However, if a 2-discriminant counterexample is
found, the model violates individual fairness, and the goal is
to characterize the extent of this violation by identifying the
maximum value of k or which the model is k-discriminant.

We address this in two phases. First, we formulate the 2-
fairness verification problem using symbolic reasoning tech-
niques such as mixed-integer linear programming (MILP)
and satisfiability modulo theories (SMT). These solvers can
either certify the model’s fairness or generate counterexamples
that serve as individual discriminatory instances. Second, to
assess the severity and structure of discrimination, we em-
ploy randomized search strategies that explore neighborhoods
around these counterexamples to identify the maximum k-
discrimination witnessed by the model.

Certifying 2-Fairness requirements. Unlike adversarial ro-
bustness, which is typically a local property around a spe-
cific input, individual fairness is a global property: any two
inputs differing only in protected attributes—regardless of
their location in the input space—must yield similar outputs.
Therefore, verification approaches for local robustness [33],
[34] are insufficient for certifying individual fairness.

SMT Solver. FAIRIFY [6] formulates the individual fairness
problem with an SMT-based approach to verify individual
fairness property in DNN. We briefly summarize this approach
below. Let a DNN be viewed as a function F' : R — R"
and let I and F5 be two copies of the same DNN, then any
fairness property can be formulated as the verification query:

¢pre ($7 Jf'/)/\qbdom (.13, 1‘/)/\Z/=F1 (x)/\y/:FQ (x/)_>¢post(y7 y/)

where = and 2’ are the inputs to F} and F, respectively, y
and y’ are the outputs to F; and Fj respectively, ¢, is the
precondition clause on the two inputs for the given fairness
property (e.g., x and x’ don’t differ on the non-protected
attributes), @40, 1S the domain constraints on the input and
®post 18 the postcondition clause on the two outputs for the
given fairness property (e.g., y and y’ are equal). Such a
verification query can be fed into an SMT solver to check for
satisfiability, and furthermore, can also be asked to construct
counterexamples if it is unsatisfiable.

Mixed Integer Linear Programs. We use a MILP encoding,
similar to [23[], [35], [36] to certify individual fairness of
DNN. We describe the MILP formulation of our DNN inspired
by [23]]. We have two copies of a pertained DNN each with R
hidden layers, input dimension n 4 m, and output dimension
t. Let the first n dimensions of the input be the non-protected
input and the latter m dimensions be the protected input. If
x(v)J denotes the output of the jth neuron in the rth layer for
the v** DNN and ©; denotes the weight for layer i for both
the DNNSs, then the computation equations for our DNNs are:

(Vo) (Vi, j) D ReLU(O4(j,r)a(v)i_y) = z(v)]

We can denote these constraints in linear form by introducing
new variables s(v)Z and z(v)!, which represent the negative
output of the jth neuron in the rth layer and the activation
state of the ReLU unit acting on the jth neuron in the rth
layer respectively. Noting that ReLU(x) := max(zx, 0), we get
our corresponding linear constraints to be: for all v,¢ and j:

Sy, =

2@l > 0
e {0
z(v)f =1 — x(v)z <0
z(v)l =0 — s(v)! <0

Additionally, our input to both DNNss is identical on the non-
protected inputs, i.e.,

(Vj < n)a(1)f = z(2);

for j € {1,...,n}. If we denote the final output of the DNNs
by Fi and F5 respectively, then F), is given by the maximum
of the output of all neurons in layer R i.e.

(Vo) F, = max(z(v)k, 2(v)%, ...z (v)k)

As before we can denote these constraints in linear form
by introducing auxiliary variables. Finally, our optimization
objective is given by max |F} — F3|. Our objective function
can be made linear by noting that |x| = max(x, —z) and
then using the techniques shown before to convert the max
function into a linear form by introducing auxiliaries. Finally,
it is trivial to see that our two DNNs satisfy the 2-Fairness
property iff the output of the corresponding MILP is at most
€ (we use € of 0.05 similar to FAIRIFY [6]).

Algorithm 1: HYFAIR SEARCH

Input: Deep learning model D, Test Data Samples A,
protected attributes Z, Non-Protected attributes
X, Formal computation model Solver, An
evaluation function Eval, Type of search 7:
‘RW’, ‘SA’, or ‘SA+KNN’, Temperature of SA
temp, head probability p, and Time-out 7.
Output: bestEval, bestidx
1 seed, i, bestEval < Rand(A), 0, 0
2 curSol + Solver(D, Z, X, seed)
3 curEval < Eval(curSol, 7)
4 while Not Time-out(T') do
5 if curEval > bestEval then

6 L bestEval, bestSol < curEval, curSol
7 else
8 curSol, curEval < Solver(D, Z, X, curSol),

| Eval(curSol, 2)
9 if 7 == RW then

10 cand < RandNeighbor(A, curSol)

11 curSol, curEval + cand, Eval(cand, Z)

12 else

13 if 7 == SA then

14 | cand « ITE(f1lip(p), curSol, Rand(A))

15 else if 7 == SA+KNN then

16 L cand + ITE(f1lip(p), KNN(curSol),

Rand(A))

17 candEval « Eval(cand, 2)

18 diff <— curEval - candEval

19 accept_ratio < Exp(—T:l‘:}{ (fl))

20 if accept_ratio > UniformSampling(0,1)
then

21 L curSol, curEval < cand, candEval

22 i+—i+1

23 return (bestEval, bestldx)

Finding £-Discriminants with Randomized Search. Algo-
rithm [T] takes as input a deep learning model D; a dataset
A consisting of protected attributes P and non-protected
attributes (J; a Solver (either SMT or MILP); an Eval
function that measures the fitness of the solution against the
K -fairness criterion; a search type 7 (e.g., random walk, sim-
ulated annealing (SA), or a hybrid SA with nearest-neighbor
heuristics); a temperature function for SA; and a timeout 7.
The algorithm outputs a solution that witnesses a violation
of the k-fairness requirement. Following FAIRIFY [6], we set
€=0.05, meaning the DNN’s outputs are considered distinct if
they differ by more than 5% in predicted score as the protected
attributes vary while others remain fixed.

Initialization: A random data sample from the dataset is
selected as the current seed to query MILP or Z3 solvers.
We then use the current seed to search the DNN D via the

Algorithm 2: HYFAIR DEBUGGING

Input: DNN model D; k-discriminant input set
X ={(z,z),...,(z,2zx)}; number of
neighborhood samples n; high k-discrimination
threshold «; significant difference threshold §.
Output: Explanation predicates ¢

—

Xperturb < localPerturbation(X,n)

// Generate neighborhood samples

[5]

Scores < D(Xperwurb)

Yoerwrb < getHighLowKLabels(Scores, k)
// Label based on k

4 ® < buildDecisionTree(Xperurbs Yperturb)
// Train decision tree

5 L,II «+ getLeavesAndPaths(®)

// Extract leaves and paths

// Evaluate perturbed inputs

w

6 foreach (I,7) € (L,1I) do
7 if isHighKLeaf(l!) then
8 Xcex < sampleCounterExamples(m)
9 Scoreseex — D(Xcex)

10 meanKDiff <+ getKStats(Scores, Scoresgex)
11 if meanKDiff > § then
12 L ¢.add(n)

13 D' + train(D, X, ¢)

// Retrain with explanation-based mitigation

14 return ¢, D’

Solver that finds a 2-discriminant. We take the instance and
query the DNN over all possible protected values to measure
the number of buckets for the evaluation of instances.
Iterations: The loop executes until the timeout 7' is reached.
In each iteration, we first check if the current solution gives
the best solution. Otherwise, we might be stuck in the local
minima, hence we query the Solver to get a new solution.
Depending on the type of search (discussed below), we gen-
erate a candidate sample from the current solution (derived by
the Solver) and accept it as the current sample.

Search Type: The logic of search significantly depends on the
type of search 7. We consider the following search strategy:

1) Stateless Random Search. We randomly choose a data
point from the neighborhood of the current solution
and accept it as the next sample to explore. Since this
approach navigates the search space uniformly at random
without any guidance; this serves as the baseline.

2) Simulated Annealing Search. We consider the current
solution, inferred by the solver, with the probability p and
a random data point from A with the probability 1 —p as
the candidate for some large p > 0.9. Then, we follow
the Metropolis algorithm, where we evaluate the fitness
of the candidate and accept it as the next sample with the
probability that is proportional to its difference from the
fitness of the current solution.

3) Simulated Annealing with Nearest Neighbor Search.
This type of search uses nearest neighbors of current
solutions in addition to a random sample from A. Specif-

ically, the algorithm uniformly chooses one of the nearest
neighbors with the probability p and a random data point
from A with the probability 1—p as the candidate for
some large p>0.9.

Debugging k-discrimination. Given the set of k& samples
that witness the maximum k-discrimination in the DNN,
ie, D = {(m,zi)}fil, our next goal is to understand the
circumstances under which the DNN model becomes arbitrary
and come up with a mitigation strategy. One naive idea is
to infer K local explanations via methods like LIME [26]]
and mine common patterns among the K explanatory models.
However, this approach might be both expensive and fail to
find useful patterns, and derive limited explanations. We need
a robust framework to learn a common explanation for all
K points together. Our approach is to leverage the decision
tree algorithms to synthesize a set of predicate functions
¢j + X — B such that ¢;(z) = true provides an explanation
about the circumstances over the non-protected attributes that
led to the maximum arbitrariness of DNNs.

Algorithm [2| shows our approach to inferring the predicate
functions to explain bugs. Given a set of inputs that witnesses
significant discrimination, we first generate n neighborhood
data samples around the input by local perturbations (Line 1).
Then, we query the DNN model to measure k-discrimination
for each of those neighborhood data samples (Line 2). To
provide a succinct explanation, we convert k values into high
and low labels (binary classes of high-K vs. low-K) using the
0.95-percentile of k values, where only the top 5% of k values
belong to the high-K class of significantly discriminatory (Line
3). Then, we infer a decision tree model that yields a set
of paths (a predicate function) in the hyper-rectangular input
space to explain what properties are common inside the high-
class inputs and what properties distinguish high and low
classes (Line 4). Then, we retrieve each path in the tree and its
corresponding leaf node and go through each path and label
to identify explanatory models (Line 5-6). If the leave node
is a high-K class (Line 7), then the corresponding path in the
tree that traverses from the root node to this leaf node is a
candidate to explain the significant discriminatory inputs. To
add the candidate path to the final set of explanatory models,
we sample data points that evaluate the candidate path to
false, i.e., negating the predicate function (Line 8), and
compute the corresponding k values of these instances by
querying the DNN model (Line 9). We calculate the difference
between the mean of k for the data samples that satisfy the
path conditions and those that negate the conditions (Line 10).
If the differences are more than a threshold §, we deem the
path robustly explains the significant discriminatory instances
(Line 11-12). We use the generated samples and DT predicates
to mitigate unfairness [37]] in the DNNs (Line 13).

V. EXPERIMENTS

In this paper, we pose the following research questions:

RQ1 How does HYFAIR compared to FAIRFY [6] in certi-
fying 2-fairness and finding counterexamples?

RQ2 What is the performance of different randomized
search algorithms in characterizing k-discrimination?
RQ3 What are the performance and complexity of HYFAIR’s
explanations as compared to the baseline LIME [26]]?
RQ4 How does HYFAIR help improve fairness?

Benchmarks. We have 20 DNN benchmarks of various ar-
chitectures (fully connected and based on ReLU activation
functions) from the literature [6]. They include real-world
DNNs in Kaggle [38] and the SE literature [39], [9], [32],
[40], [41] where the number of layers and neurons vary from
3-11 and 10-318 neurons. These benchmarks are trained over
two popular and socially critical datasets. The Adult Census
dataset concerns whether an individual earns more than 50K
or not. The Bank Marketing dataset is used for the prediction
of whether a client will subscribe to a service or not.

Technical Details. We implemented HYFAIR in Python
v3.8.10 with TensorFlow v2.12.0 (Keras API) and scikit-learn
v1.2.2. We run all the experiments on an Ubuntu 20.04.4
LTS OS sever with AMD Ryzen Threadripper PRO 3955WX
3.9GHz 16-cores X 32 CPU and two NVIDIA GeForce RTX
3090 GPUs. We take the average of 10 multiple runs for all
experiments and report the standard deviations from the mean.
We also set K to 20 throughout the experiments.
Hyperparameter Selection. Following FAIRIFY [6], we set the
MILP solver timeout to 100 seconds and used the default
convergence tolerance of 0.0001. We run the randomized
search for 4 hours. While we did not fix a threshold for
k-discrimination during the search, we used a 95-percentile
threshold to classify samples into high and low k values for
training decision trees. We generated 5,000 samples following
LIME [26] established methodology, from the neighborhood
of high k-value instances to explain circumstances under which
the DNNs exhibited arbitrary behaviors. This number balanced
the explanation quality with computational efficiency, required
to quantify the impact of local samples on model outcomes.
RQ1: Finding individual discrimination. We compare our
tool to the FAIRIFY [6]], a formal verification method to certify
2-fairness properties of DNNs or find counterexamples as
the individual discriminatory instances (2-discriminants). The
key difference between HYFAIR and FAIRIFY is that Fairify
models the DNNs with SMT formulations and uses Z3-solver
whereas HYFAIR models DNNs with MILP formulations.

Table [[] compares Fairify to our tool HYFAIR. The statis-
tically significant results are highlighted with bold fonts in
the tables. Here, we report #I1D - the number of individual
discriminatory (ID) instances, T.1st (s) - time to the first ID,
#K.1st - k-discrimination for the first ID instance, and # K
- the maximum k-discrimination.

We consider #ID and #K as the metrics for efficacy, and the
T.1st as the metric for efficiency. HYFAIR outperforms Fairify
in 85% of the cases (17 out of 20 cases) in finding more
IDs in the given timeout. In 5 cases, Fairify does not find
any ID instances where HYFAIR finds a good number of IDs.
Considering #K, HYFAIR outperforms Fairify in 80% of the
cases. In terms of efficiency of finding the first solution (i.e.,

T.1st), HYFAIR outperforms Fairify in 90% of cases. Farify
spends a significant amount of time on preprocessing (input
partition) and pruning.

We note that in the BM4 and BMS cases, only one of
the tools can find discriminatory instances. This leads us to
understand crucial differences between MILP- vs. Z3-based
techniques. We find that Z3 produces counterexamples that
are often close to each other and almost belong to the same
region. On the other hand, MILP produces counterexamples
from different regions of the search space, oftentimes from
the boundaries that separate a safe region from an unsafe one.
Each technique might be effective for different benchmarks.

Answer RQ1: Our MILP formulation significantly out-
performs the baseline Fairify in most of the cases (more
than 80% of the time) in terms of finding more individual
discriminatory (ID) instances in shorter amounts of time.

RQ2: Search for k-discrimination. Our goal is to find
instances that witness the maximum k-discrimination. We
compare the efficacy and efficiency of two variations of
simulated annealing (SA) algorithms in characterizing the
amounts of dependencies between protected attributes and
DNN outcomes. We also include a Random Walk (RW) to
establish a baseline that abolishes the SA.

Table [lIf summarizes the outcomes of this experiment. Since
we certify 2-fairness for BM4 and BM7, we exclude them from
the search. The columns are similar to Table[l] except that Iter
shows the number of completed iterations, succ.rate shows
the proportion of ID instances relative to the total generated
instances during the search, and #ID.maxK reports the
number of IDs with max k-discrimination, and T.maxK
shows the time taken to find the max k-discrimination.

To compare the performance of the search algorithms,
we focus on the following metrics: Max. K, Avg.K,
#ID.maxK, and #T.maxK. While all three randomized
search algorithms effectively identify ID instances, the SA
algorithm consistently outperforms the others, identifying ID
instances with the maximum buckets in 94% of the cases.
When considering #1D.maxK and T.maxz K, SA algorithms
perform slightly better in 50% of the cases, whereas RW and
SA+KNN show better results in 39% and 10% of the cases,
respectively. Also, taking into consideration the number of ID
instances, the SA algorithm leads, finding the highest number
of IDs in 56% of the benchmarks, slightly surpassing the RW
algorithm, which achieves this in 50% of cases. Additionally,
the SA algorithm demonstrates a clear advantage in terms of
time to the first solution, discovering the first ID instance faster
than the other algorithms in 72% of the benchmarks. Focusing
on the average number of clusters (Avg.K), the SA+KNN
algorithm outperforms other algorithms by generating ID
instances that exhibit a higher average number of clusters in
56% of the benchmarks, where SA and SW algorithms achieve
33% and 17%, respectively.

TABLE I: Comparison of SMT Solver to MILP solver for characterizing k-fairness.

FAIRFY [6] (SMT)

HYFAIR (MILP)

DNN #ID T.1st (s) #K.1st Num. Clusters (#K) #ID T.1st (s) #K . 1st Num. Clusters (#K)
AC1 1.4 (£ 1.1) 81.5 (£ 70.2) 8.2 (£ 4.9) 11.2 (£ 5.1) 23.2 (+2.9) 0.5 (+ 0.2) 17.6 (£ 0.9) 18.6 (£ 0.6)
AC2 0.6 (£ 0.5) 75.2 (+ 108.5) 8.7 (£ 5.4) 8.7 (£ 5.4) 18.6 (£ 6.7) 2.7 (£ 2.2) 15.8 (£ 1.1) 17.8 (£ 0.4)
AC3 2.0 (£ 2.8) 32.0 (£ 29.9) 9.2 (£ 5.7) 11.2 (£ 6.6) 12.6 (£ 4.6) 34 (+2.0) 11.4 (£ 3.0) 16.0 (£ 2.4)
AC4 0.4 (+ 0.9) 71.2 (+ 0.0) 9.0 (+ 6.4) 12.0 (£ 8.5) 0.4 (+ 0.5) 106.2 (£ 50.3) 8.5 (+ 2.1) 8.5 (+ 2.1)
AC5 0.0 (£ 0.0) N/A(£ N/A) N/A(£ N/A) N/A(£ N/A) 4.0 (£ 0.7) 25.1 (+ 15.8) 10.2 (£ 4.4) 15.0 (£ 0.0)
AC6 0.4 (£ 0.5) 139.1 (£ 83.5) 9.5 (£ 0.7) 9.5 (£ 0.7) 25.0 (+ 1.6) 0.3 (+ 0.0) 11.8 (+ 4.4) 16.6 (£ 3.3)
AC7 0.0 (£ 0.0) N/A(+ N/A) N/A(£ N/A) N/A(£ N/A) 2.0 (+ 0.0) 73.8 (+ 31.2) 15.2 (£ 3.3) 17.2 (£ 2.6)
AC8 6.8 (£ 2.3) 12.7 (£ 7.6) 10.6 (£ 2.5) 13.6 (+ 2.4) 25.0 (+ 0.7) 0.2 (+ 0.0) 15.8 (£ 0.8) 17.2 (£ 0.4)
AC9 12.8 (+ 2.3) 7.4 (£ 5.1) 5.6 (+ 2.0 11.6 (£ 0.5) 23.6 (+ 1.3) 0.2 (+ 0.0) 14.8 (£ 0.8) 16.0 (£ 0.0)
AC10 0.8 (£ 0.8) 101.9 (£ 53.6) 6.7 (£ 5.7) 9.7 (£ 6.7) 234 (+ 1.1) 0.43 (+ 0.0) 15.0 (£ 1.6) 17.6 (£ 0.5)
AC11 0.0 (£ 0.0) N/A(+ N/A) N/A(£ N/A) N/A(£ N/A) 0.8 (£ 1.3) 64.2 (+ 53.9) 8.5 (£ 0.7) 9.0 (+ 1.4)
ACI12 0.0 (& 0.0) N/A(+ N/A) N/A(+ N/A) N/A(+ N/A) 13.2 (£ 44) 3.8 (£ 2.9) 15.2 (£ 3.2) 18.8 (£ 1.6)
BM1 1.2 (£ 1.6) 4.19 (£ 0.1) 3.0 (+ 0.0) 6.0 (+ 4.24) 37.8 (+ 4.4) 24 (+ 1.4) 7.8 (£ 0.8) 9.0 (+ 0.0)
BM2 5.0 (£ 64) 42.6 (£ 41.3) 4.2 (+ 3.0) 44 (+ 3.3) 332 (£ 11.5) 5.3 (+ 4.8) 74 (£ 1.1) 9.0 (+ 0.0)
BM3 4.4 (£ 4.0) 22.3 (+ 46.7) 4.0 (£ 2.3) 52 (£ 25) 58.8 (+ 2.8) 2.3 (£ 1.1) 7.6 (£ 1.1) 9.0 (+ 0.0)
BM4 0.6 (£ 1.3) 6.5 (+ 0.0) 2.0 (+ 0.0) 2.0 (£ 0.0) 0.0 (£ 0.0) N/A(£ N/A) N/A(+ N/A) N/A(+ N/A)
BM5 13.8 (+ 12.6) 5.8 (£ 10.7) 2.4 (£ 0.5) 3.4 (£ 09) 43.2 (+ 4.8) 1.6 (+ 1.2) 7.8 (£ 1.3) 9.0 (+ 0.0)
BM6 17.2 (£ 14.1) 17.7 (+ 37.5) 5.2 (£25) 8.2 (£ 1.1) 59.8 (+ 6.7) 3.5 (£ 2.1) 4.0 (£ 1.0) 5.8 (£ 0.4)
BM7 8.4 (£ 9.2) 24.1 (+ 50.3) 4.0 (£ 1.4) 52 (£ 1.3) 0.0 (£ 0.0) N/A(£ N/A) N/A(+ N/A) N/A(+ N/A)
BM8 0.0 (£ 0.0) N/A(+ N/A) N/A(£ N/A) N/A(£ N/A) 1.6 (£ 0.9) 63.7 (+ 40.4) 4.6 (£ 0.9) 4.8 (£ 0.8)

Answer RQ2: Simulated annealing outperforms other
randomized search strategies in inding maximum k-
discrimination, the time to the first instance of max k, and
the number of unique instances with max k-discrimination.

Explanations via HYFAIR (RQ3). Our goal is to find out
whether HYFAIR provides robust and succinct explanation
compared to the baseline LIME [26]. Given a set of inputs
that characterize the significant discrimination (a high value of
K), we investigate the performance of HYFAIR (explanation)
to LIME. We note that LIME cannot provide the explanation
out-of-the-box since its goal is to explain the outcome for one
sample. To enable LIME to provide such explanations, we
query it with K samples and extract the common features from
the top 3 features in each explanation. To study the robustness
of LIME, we perturb the important features (one by one),
measure the value of k-discrimination by querying the DNN
model on the perturbed features, and report the difference
between the initial and perturbed values.

We report the results of experiments in Table with the
columns Init.XK - the max k-discrimination value from the
search step, Size - the size of explanation in terms of #
of conjunction, K - the mean k-value before perturbation,
Pert.K - the k-value after perturbation of the corresponding
features for robustness, Diff - the difference between the
initial and perturb explanations, and Cov - the input area
volume of explanation for generality. Let us first study the
overall trend in Table Considering the Adult census (AC)
dataset, Init .K and K values vary between 17 to 20, Size
value varies between 1 to 13, Diff value varies between 2.3
to 17.2, and Cov varies between 1 to 2,590.

Looking into Table HYFAIR has given an explanation
both with smaller or equal size, but with more robust validation
rules in terms of diff values, and with significantly higher
coverage. There are very few cases when HYFAIR requires a
larger size of explanation, but in those cases, the explanation
rules show strong performances in terms of coverage and
validation diff values. Specifically, HYFAIR performs better

in more than 78% of the cases with respect to the robustness
of explanations. In all cases, HYFAIR covers a larger volume
of input space than LIME. HYFAIR provides a succinct ex-
planation, whereas LIME’s explanations may use all features,
which may make it difficult to find the root causes.

Concrete Example of Explanation. HYFAIR also pro-
vides rich explanation through the hyper-rectangular split
of the input space to show the significant discrimination
(see all decision tree models in the appendix). The follow-
ing plot shows a DT that explains the circumstances under
which the DNN model
for the AC2 benchmark

hours_per_week > 39
samples = 427
value = [213.5, 213.5]

becomes significantly
discriminatory. For frmes e

. {sublree | value = (87367, 185.033]
example, the predicate ° / i e
{hours_per_week > I { Trancated |

subtree |

39 A marital_status != oubree

capital_gain > 11k
samples = 34

[‘Mal’rled-CIV Spouse’] value = [11.4, 170.8]
A hours_per_week e
<= 64 A workclass = (ahe=Hioseioe

[‘Private’, ‘Self-emp-

not-inc’, ‘Self-emp-

inc’, ‘Federal-gov’] A native_country = [‘United-States’,
‘Cambodia’, ‘England’, ‘Puerto-Rico’, ‘Canada’, ‘Germany’]
A capital_gain <= 11000} shows a hyper-rectangular region
with a significant arbitrariness (note: a subset of conditions
are not shown in the DT due to the presentation).

Answer RQ3: HYFAIR provides rich and succinct expla-
nations that cover a larger sub-space and is more robust in
explaining the root cause of significant arbitrariness.

Debiasing unfairness via HYFAIR (RQ4). We perform two
interventions to mitigate unfairness in the original models:
1) we add decision tree rules as guardrails to refute queries
that can lead to arbitrary outcomes, and 2) we retrain the
original DNN models over curated discriminatory instances
via data augmentation, similar to prior works [42], [43], [10],

TABLE II: Random Walk (RW) vs. Simulated Annealing (SA) as well as K-nearest neighbors variant of SA.
Model | Search Iter(x 1K) Mazx. K Avg. K T.1st #I1D Succ.rate #ID.mazK.1 T.maxK.1
RW 27 (£04) | 200 (£00) | 81(X£00) | 5 (% 10) 1809 (£ 239) | 672 (£ 0.7) | 38 (£ 2.) 4561 (£ 6387)
ACl | SA 3.6 (£ 1.1) | 200(£00) | 93(£1.1) |1(x2) 1927 (£ 553) | 53.3 (£ 1.8) | 27 (+ 1.4) 1162 (+ 1723)
SA+KNN | 2.1 (£03) | 193 (£ 0.5) | 8.8 (£02) | 62 (+ 86) 625 (£ 200) 297 (£9.9) | 19 (x0.7) 4799 (+ 4089)
RW 20 (£ 04) | 188 (£ 04) | 142 (£00) | 3 (£3) 1953 (£ 366) | 97.4 (£ 02) | 2.0 (£ 22) 6761 (£ 7330)
AC2 | SA 2.6(+ 0.4) 19.0 (£ 0.0) | 14.0(£ 0.8) | 2 (£ 1) 2245 (4 312) | 87.7 (£ 0.6) | 3.8 (& 2.3) 4769 (£ 3939)
SA+KNN | 1.3(% 0.3) 183 (£ 0.5) | 143 (£ 0.1) | 8 (+ 2) 885(+ 149) 717 (£ 14.0) | 4.0 (£ 2.5) 3328 (+ 3733)
RW 2.6(E 0.5) 20.0 (£ 0.0) | 141 (£ 0.1) | 4 (£ 6) 1667 (£ 310) | 64.3 (£ 0.5) | 255.2 (£ 51.7) | 63 (£ 53)
AC3 | SA 32(£05 | 200(£00) | 141(£22) | 4= 7) 1846 (+ 353) | 58.6 (£ 6.3) | 170.4 (£ 72.0) | 86 (& 80)
SA+KNN | 2.0 (£ 0.5 | 20.0 (+ 0.0) | 17.5 (£ 0.5) | 20 (& 20) 105(+ 32) 5.8 (4 2.9) 12,5 (+ 6.2) 808 (& 1504)
RW 0.2 (£ 0.0) | 20.0 (£ 0.0) | 152 (£ 04) | 122 (£ 66) 122 (£ 4) 88.0 (£33) | 49 (£ 1.7) 2369 (2335)
AC4 | SA 0.2 (£ 0.0) | 200 (+0.0) | 17.1 (£ 0.4) | 127 (+ 47) 125(+ 7) 91.0 (£ 47) | 132 (+4.9) 1262 (+ 642)
SA+KNN | 0.1(% 0.0) 19.7 (£ 0.5) | 162 (£ 1.1) | 229 (& 151) 54 (£ 15) 72.6 (£ 227) | 47 (£ 6.7) 2841 (£ 2781)
RW 17 (£03) | 181(£05) | 13.7 (£ 0.0) | 4 (£ 3) 1650 (£ 333) | 97.9 (£ 03) | 1.8 (£ 1.0) 4730 (£ 6327)
AC5 | SA 1.6(+ 0.2) 183 (£ 0.4) | 13.0 (£ 0.1) | 3 (£ 1) 1545 (4 235) | 97.7 (£ 0.76) | 9.6 (£ 5.7) 2209 (+ 2826)
SA+KNN | 0.9 (£02) | 173 (£ 0.7) | 13.5(£02) | 11 (£ 4) 687 (£ 176) 78.4 (£ 12.1) | 6.0 (£ 13.8) 6483 (- 4482)
RW 26 (£ 05 | 200 (£0.0) | 143(£00) | 1(£0) 2491 (£ 473) | 942 (£ 03) | 379 (£ 62) 338 (£ 230)
AC6 | SA 29 (£0.6) | 200 (£0.0) | 13.8(£03) | 1(x 1) 2623 (£ 500) | 915 (+ 1.5) | 108.4 (£25.7) | 93 (+ 82)
SA+KNN | 1.8 (£ 04) | 20.0 (£ 0.0) | 14.6 (£ 03) | 6 (+ 1) 801 (+ 197) 454 (£ 10.8) | 12.8 (£ 3.9) 1847 (4 2049)
RW Z1(£08) | 160 (£ 0.0) | 144 (£ 0.3) | 820 (£ 770) 17 (£ 3) 0.4 (£0.0) 71 (£ 1.8) 3493 (£ 2993)
AC7 | SA 43 (£09) | 16.5 (£ 0.5) | 143 (£ 0.4) | 1602(£ 1527) | 18 (£ 7) 0.4 (+02) 2.6 (£ 1.6) 3646 (+ 2413)
SA+KNN | 3.8 (£ 1.0) | 16.0 (£ 0.5) | 15.0 (£ 1.0) | 2019 (+ 1579) | 7 (£ 3) 0.2 (£ 0.1) 2.9 (£ 1.8) 7189 (£ 4688)
RW 25(£06) | 160 (£0.0) | 11.2 (£ 0.0) | 11(E 13) 1467 (£ 370) | 585 (£ 0.8) | 7.5 (£ 33) 1804 (£ 1785)
AC8 | SA 38 (£ 15 | 169 (+03) | 123(£02) | 1(+2) 2072 (£ 518) | 57.0 (£ 8.8) | 9.2 (£ 3.6) 2569 (+ 2182)
SA+KNN | 2.2(4 0.4) 15.6 (£ 0.7) | 120 (£0.2) | 12 (£ 9) 222 (+ 48) 103 (£ 2.1) | 5.0 (£ 4.6) 3061 (+ 3627)
RW 23 (£04) | 19.0 (£ 0.0) | 141 (£00) | 2 (£ 3) 2080 (£ 343) | 91.3 (£ 2.9) | 53.3 (£ 83) 102 (£ 41)
ACY | SA 31(£04) | 190 (£0.0) | 137 (£07) | 1(£0) 2430 (£ 323) | 77.6 (£ 1.4) | 51.0 (£ 8.9) 443 (£ 362)
SA+KNN | 2.3 (£03) | 19.0 (£ 0.0) | 13.8 (£02) | 9 (+ 6) 443 (4 183) 197 (£9.7) | 52 15) 1263 (4 1258)
RW 23(E 0.4) 17.0 (£ 0.0) | 11.9 (£ 0.0) | 3 (£ 8) 1795 (£ 311) | 771 (£ 0.5) | 1.8 (£ 0.9) 4245 (£ 5628)
ACI0 | SA 35(£09) | 169(+03) | 113(£1.6) | 3 (x4 1838 (4 545) | 51.6 (£2.1) | 5.8 (£ 11.5) 3778 (+ 3017)
SA+KNN | 2.3 (£03) | 164 (£ 0.5) | 13.0 (£ 0.1) | 15 (+ 18) 336 (+ 62) 148 (£ 3.7) | 45 (£3.9) 4779 (£ 4621)
RW T1(£03) | 200 (£0.0) | 138 (£0.1) | 10 (£ 6) 89 (£ 275) 812 (£ 13) | 72 (£3.0) 2990 (£ 2735)
ACI1 | SA 13 (£ 03) | 20.0 (£ 0.0) | 15.0 (+ 04) | 8 (£ 5) 987 (£ 275) 738 (£ 7.1) | 299 (+ 16.2) 471 (£ 465)
SA+KNN | 0.6 (£ 0.2) | 194 (£ 0.5) | 14.3 (£ 0.6) | 44 (+ 57) 155 (& 80) 26.1 (& 12.1) | 5.1 (+ 4.1) 2498 (£ 2158)
RW 22(% 04) 200 (£ 0.0) | 177 (£ 0.1) | 1 (£ 1) 2204 (£ 409) | 992 (£ 0.2) | 99.7 (£ 24.8) 120 (£ 26)
ACI2 | SA 24 (£09) | 200 (£00) | 157 (£ 17) | 1(x0) 1662 (4 593) | 70.8 (+ 1.6) | 60.6 (£ 25.6) 203 (+ 149)
SA+KNN | 1.5(£0.1) | 200 (£ 0.0) | 177 (£0.1) | 9 (+ 4) 957 (£ 185) 65.5 (£ 11.0) | 19.6 (+ 8.0) 2068 (+ 1431)
RW 88 (X19) | 90(£00) | 50(£00) |3 (x4 5409 (£ 1151) | 61.2 (£ 0.3) | 45.8 (£ 10.2) 295 (£ 43)
BMI | SA 91 (£1.6) | 9.0(£00) | 52(£06 |11 5135 (+ 657) | 57.3 (£ 6.1) | 263 (£ 8.5) 420 (£ 393)
SA+KNN | 4.7(% 0.9) 9.0 (£00) | 57(x01) | 9(£11) 1663 (& 387) | 353 (+3.8) | 13.4(% 54) 1646 (4 1018)
RW 110 (£0.8) | 90 (£0.0) | 40 (£00) | 12 (£ 13) 766 (£ 53) 7.0 (£ 0.1) 222 (£ 2.0) 738 (£ 682)
BM2 | SA 113 (£ 0.0) | 9.0 (£0.0) | 46 (£ 1.1) | 8 (10 726 (£ 200) 6.4 (4 1.8) 17.3 (& 7.0) 936 (= 896)
SA+KNN | 9.0 (£ 1.8) | 9.0 (£ 0.0) | 55(£0.1) | 32 (& 28) 417 (& 94) 4.6 (£ 0.2) 7.9 (£ 3.3) 3248 (+ 3087)
RW 106 (£ 1.8) | 9.0 (£ 0.0) | 60 (£0.0) | 3 (£3) 3230 (£ 551) | 303 (£ 0.0) | 3414 (£57.1) | 79 (£ 56)
BM3 | SA 13 (£ 0.1) | 9.0 (£00) | 65(£09 |22 2984 (£ 315) | 265 (+£2.9) | 419.0 (£ 132.0) | 24 (£ 17)
SA+KNN | 7.9 (£22) | 9.0 (£ 0.0) | 7.3(£0.1) | 21 (+ 36) 1072 (£ 276) | 13.6 (£ 0.7) | 111.1 (£ 403) | 131 (& 148)
RW 11.0 (£ 09) | 6.0 (£0.0) | 3.6 (£00) | 2(£2) 2101 (£ 182) | 192 (£ 0.1) | 59 (£ 03) 1620 (£ 1549)
BM5 | SA 102 (£ 1.7) | 60 (£0.0) | 3.7(£05 | 3(x3) 1605 (4 249) | 159 (£ 2.5) | 254 (£ 222) 464 (£ 2056)
SA+KNN | 107 (£ 1.6) | 59 (£ 03) | 41(£00) | 11 (+9) 1366 (4 213) | 12.8 (+ 0.4) | 29.2 (+ 81.1) 4836 (- 2269)
RW 13 (£ 00) | 70 (£ 0.0) | 22(F00) | 1.7 (£ 1.7) 2450 (£ 0) 217 (£ 0.0) | 40 (£ 0.0) 1002 (£ 732)
BM6 | SA 113 (£ 0.0) | 8.0 (£0.0) | 3.4 (£00) | 1.6 (+ 1.5) 2315 (£ 328) | 20.5 (+£2.9) | 21.5 (£ 13.1) 137 (+ 32)
SA+KNN | 113 (£ 0.1) | 7.9 (£ 03) | 28 (£ 0.1) | 5.0 (+ 4.1) 2123 (+£238) | 188 (£ 2.1) | 3.4 (& 3.6) 3239 (+ 1900)
RW 03(£0.1) | 70X 00) | 3.8(F0.1) | 129 (£ 71) 52 (£ 17) 185 (£26) | 1.2 (£05) 4977 (£ 5861)
BM8 | SA 03(£0.1) | 80(£00) | 48(£0.1) | 394 (+ 87) 42 (£ 4) 16.5 (£35 | 1.2(x21) 4570 (£ 5023)
SA+KNN | 0.1 (£0.0) | 65(£ 1.7) | 43 (£03) | 3415(£478) | 20 (£ 9) 127 (£ 40) | 2.0 (+ 2.0) 8929.7 (+ 4458)

TABLE III: LIME [26] vs. HYFAIR based on robustness, size, and the generality of explanation.

. LIME [26] HYFAIR
DNN | Init- Ko T Pert.k | Diff | Cov | Size K Pert. K DifT Cov
ACI 20 S 20 [85(=33 | 115 | 1 6 [127z62) | L1&03 | 116 | 1082 =80)
AC2 I 6 19 [99(£34 | oI I T 17 ®30) | 25 &25) | 92 154 (£3.7)
AC3 20 S 20 [11@®43) | 93 I S [158 ®20) | 43 (45 | 115 120 (22.2)
ACA 20 7 120 [161@&3) | 39 i 3 1952 07) | 8259 | 113 | 3847 223.7)
ACs 8 & 8 11cz0n | 70 i 3 [140@00) | 69 @32 | 71 | 15720 2349)
AC6 20 T 20 [179 @08 | 23 1 3 [170@00) | 82(£26) | 88 | 6223 (& 228)
ACT 17 3 17 2@&36 | 50 I 3 [1702 00) | 1.0 00) | 160 10 & 0.0)
ACS 17 S 17 [94@1d | 76 T 6 [112Z09) | 1206 | 100 | 574 (89
ACO 9 319 67@ 1D | 123 | 1 4 [160 @0.0) | 40&00) | 120 | 493.0 (25.8)
ACIO | 17 ST 17 [79@43) | 91 I 3 170 £ 00) | 100 @0.0) | 70 | 25905 & 55.9)
ACTT | 20 6 (20 l6&1]) | 42 T & [30@E14) | 432D | 87 | 8953 (& 27.5)
ACIZ | 20 6 (20 [08@27 | 92 T 4 [00@E14) | 1812 | 172 | 7029 & 2L7)
BMI 9 3 0 | 37@10) | 53 i T 1 90@00) | 19G@22) | 71 775 (& 79)
BM2 T 19 [53@06 | 37 1 8 [52&32) [1206 | 40 90 = 4.6)
BM3 9 310 [57@00) | 33 I 3 1 80@06) | 28GLD | 52 10 & 0.0)
BM>S 6 3 6 [2400 | 36 I 7 50@00) | 19@LD | 31 10 G 12)
BM6 g 38 [3000 | 20 i T [67@12) | 25@05 | 42 885 (£7.5)
BMS g T8 340 | 46 i 5 B0@0 | 41 @LD | 39 10 (0.0)

TABLE IV: RQ4: Original vs. Debiased model (with/without decision tree rules).

DNN Intervention Acc (%) | Tter(x 1K) Max. K Avg.K #ID Suce.rate (%) | #1D.maxK.1
ACI Original 81.81 3.6 (£ 1.1) 20.0 (£ 0.0) 9.3 (£ 1.1) 1927.0 (£ 552.5) 533 (£ 1.8) 2.8 (£ 1.4)
Original w DT | 81.81 37 (£ 1.2) 18.1 (+ 0.3) 9.1 (£ 1.0 2316.0 (£ 357.4) 68.6 (£ 23.2) 17.5 (£ 8.8)
Debias w/o DT | 81.22 3.6 (£ 0.0) 20.0 (£ 0.0) 132 (£ 0.1) | 1172.3 (£ 9.2) 32.5 (£ 0.2) 1.7 (£ 0.6)
Debias w DT 81.22 3.6 (+ 0.0) 19.5 (+ 0.8) 13.6 (£ 0.4) | 1112.7 (+ 605.7) 30.9 (£ 16.8) 4.6 (£ 5.0
AC2 Original 83.19 2.6 (£ 04) 19.0 (£ 0.0) 14.0 (£ 0.8) | 2245.0 (£ 318.8) 87.7 (£ 0.9) 38 (£ 22)
Original w DT | 83.19 2.5 (£ 04) 18.2 (+ 0.4) 14.2 (£ 0.1) | 955.0 (+ 131.9) 37.6 (£ 2.1) 1.5 (& 0.7)
Debias w/o DT | 82.32 2.6 (£ 0.0) 20.0 (£ 0.0) 4.8 (£ 0.0) 1244.0 (£ 0.0) 48.5 (£ 0.0) 3.0 (£ 0.0)
Debias w DT 82.32 2.2 (£ 0.5) 19.5 (£ 0.5) 52 (£ 0.5) 836.0 (£ 304.1) 37.8 (£ 10.1) 42 (£ 1.7)
AC3 Original 83.29 32 (£ 0.9 20.0 (£ 0.0) 14.3 (£ 2.2) | 1794.1 (+ 380.5) 58.0 (£ 6.3) 166.8 (£ 69.8)
Original w DT | 83.29 3.2 (£ 09 19.7 (£ 0.5) 11.9 (£ 3.9) | 82.1 (£ 36.3) 2.8 (+ 1.6) 25 (£ 1.1)
Debias w/o DT | 82.25 3.2 (+ 0.0) 20.0 (£ 0.0) 16.8 (£ 0.0) | 2230.0 (£ 0.0) 70.5 (£ 0.0) 490.0 (£ 0.0)
Debias w DT 82.25 3.2 (+ 0.0) 20.0 (+ 0.0) 16.8 (£ 0.4) | 1890.7 (+ 556.4) 59.7 (£ 17.6) 422.8 (+ 111.7)
AC4 Original 82.74 0.1 (£ 0.0) 20.0 (+ 0.0) 17.1 (£ 0.4) | 124.8 (= 7.3) 90.5 (£ 4.6) 132 (£ 4.9)
Original w DT | 82.74 0.1 (£ 0.0) 169 (+ 2.2) 129 (£ 29) | 3.8 (£2.1) 2.8 (+ 1.5) 0.9 (+ 0.3)
Debias w/o DT | 82.60 0.1 (£ 0.0) 5.0 (+ 10.0) 5.0 (£ 10.0) | 0.2 (£ 0.5) 0.2 (+ 04) 0.2 (£ 0.5)
Debias w DT 82.60 0.1 (£ 0.0) 11.8 (£ 10.8) | 9.2 (+ 8.4) 18.5 (£ 21.9) 13.2 (£ 15.5) 2.7 (£ 3.4)
ACS Original 83.36 1.6 (£ 0.2) 18.2 (£ 0.5) 13.0 (£ 0.1) | 1545.2 (+ 235.1) 97.7 (+ 0.8) 9.6 (£5.7)
Original w DT | 83.36 1.6 (£ 0.2) 17.5 (£ 0.7) 13.5 (£ 0.1) | 866.5 (+ 141.3) 55.1 (£ 1.4) 2.4 (£ 2.0)
Debias w/o DT | 82.66 1.3 (£ 0.4) 18.5 (£ 2.1) 11.1 (£ 0.9) | 696.0 (+ 79.2) 57.3 (£ 13.9) 155 (£ 17.7)
Debias w DT 82.66 1.4 (£ 0.3) 19.5 (£ 1.7) 10.7 (£ 0.8) | 684.8 (+ 79.6) 49.2 (+ 7.3) 152 (£ 14.2)
AC6 Original 82.04 29 (£ 0.5) 20.0 (+ 0.0) 13.8 (£ 0.3) | 2623.2 (+ 499.7) 91.5 (£ 1.5) 108.4 (£ 25.7)
Original w DT | 82.04 2.8 (£ 0.6) 18.8 (+ 0.9) 13.6 (£ 0.3) | 208.7 (+ 38.7) 7.4 (£ 0.6) 29 (+ 3.7)
Debias w/o DT | 80.86 2.9 (£ 0.0) 20.0 (£ 0.0) 10.3 (£ 0.0) | 312.0 (£ 0.0) 10.9 (£ 0.0) 2.0 (£ 0.0)
Debias w DT 80.86 2.9 (£ 0.0) 19.2 (£ 1.2) 10.0 (£ 0.2) | 285.7 (£ 27.6) 10.0 (£ 1.0) 2.0 (£ 1.1)
ACT Original 82.96 43 (£ 0.9) 16.5 (£ 0.5) 143 (£ 04) | 179 (£ 6.7) 0.4 (£ 0.1) 2.6 (£ 1.6)
Original w DT | 82.96 43 (£ 0.9) 11.0 (£ 0.0) 10.2 (£ 1.1) | 0.3 (£ 0.6) 0.0 (£ 0.0) 0.2 (£ 04)
Debias w/o DT | 81.91 3.2 (+ 0.0) 0.0 (+ 0.0) 0.0 (+ 0.0) 0.0 (+ 0.0) 0.0 (+ 0.0) 0.0 (+ 0.0)
Debias w DT 81.91 2.3 (£ 1.3) 9.5 (+ 13.4) 83 (£ 11.7) | 9.0 (£ 12.7) 0.6 (+ 0.9) 2.0 (£ 2.8)
ACS Original 82.45 38 (+ 1.5) 16.9 (+ 0.3) 12.3 (£ 0.2) | 2071.6 (+ 517.7) 57.0 (£ 8.8) 9.2 (£ 3.6)
Original w DT | 82.45 39 (£ 1.5) 16.0 (+ 0.0) 11.7 (£ 0.6) | 856.9 (4 160.3) 24.1 (+ 7.6) 52 (£ 2.6)
Debias w/o DT | 81.65 3.8 (£ 0.0) 20.0 (£ 0.0) 18.3 (£ 0.1) | 3088.5 (+ 20.5) 81.3 (£ 0.6) 1255.0 (£ 25.5)
Debias w DT 81.65 3.8 (£ 0.0) 20.0 (£ 0.0) 18.4 (£ 0.1) | 3135.0 (+ 1.4) 82.4 (£ 0.1) 1338.5 (£ 113.8)
ACO Original 82.07 3.1 (£ 04) 19.0 (£ 0.0) 13.7 (£ 0.7) | 24304 (+ 323.3) 77.6 (+ 1.4) 51.0 (£ 8.9)
Original w DT | 82.07 3.2 (£ 0.5) 18.0 (+ 0.0) 13.5 (£ 1.2) | 102.6 (£ 20.3) 3.3 (£ 0.8) 7.6 (£ 2.0)
Debias w/o DT | 80.96 3.1 (+ 0.0) 19.0 (+ 0.0) 16.4 (£ 0.0) | 2766.0 (+ 0.0) 88.2 (+ 0.0) 25.0 (£ 0.0)
Debias w DT 80.96 3.1 (£ 0.0) 18.2 (£ 1.5) 16.0 (£ 0.5) | 2051.8 (& 1367.1) | 65.4 (£ 43.6) 14.2 (£ 9.9)
AC10 Original 81.68 35(+0.9) 16.9 (+ 0.3) 11.3 (+ 1.6) | 1838.2 (4 544.9) 51.6 (£ 2.1) 5.8 (£ 11.5)
Original w DT | 81.68 3.6 (£ 1.0) 16.0 (+ 0.0) 13.0 (£ 0.3) | 804.2 (+ 279.5) 22.0 (+ 2.1) 8.5 (£ 2.8)
Debias w/o DT | 81.28 3.5 (£ 0.0 19.0 (£ 0.0) 12.5 (£ 0.0) | 2101.0 (+ 0.0) 59.4 (£ 0.0) 104.0 (£ 0.0)
Debias w DT 81.28 3.5 (£ 0.0 19.0 (£ 0.0) 12.5 (£ 0.1) | 2145.2 (£ 106.5) 60.6 (£ 3.0) 99.2 (£ 9.2)
ACIL Original 82.19 1.3 (£ 0.3) 20.0 (£ 0.0) 15.0 (£ 0.4) | 987.3 (£ 274.9) 73.8 (£ 7.1) 29.9 (£ 16.2)
Original w DT | 81.19 1.3 (£ 0.3) 19.6 (£ 0.5) 14.0 (£ 0.8) | 435.1 (£ 123.2) 32.7 (£ 2.6) 9.6 (£ 11.9)
Debias w/o DT | 80.85 1.3 (£ 0.0) 20.0 (£ 0.0) 10.2 (£ 0.0) | 767.0 (£ 0.0) 57.5 (£ 0.0) 6.0 (£ 0.0)
Debias w DT 80.85 1.3 (£ 0.0) 17.7 (+ 4.9) 9.2 (£ 1.5) 613.7 (£ 521.2) 46.0 (£ 39.1) 3.3 (£ 2.5)
ACI2 Original 82.16 24 (£ 0.9) 20.0 (+ 0.0) 15.7 (£ 1.7) | 1661.8 (+ 593.3) 70.8 (£ 1.6) 60.6 (£ 25.6)
Original w DT | 82.16 2.4 (£ 0.9) 19.2 (£ 0.6) 17.7 (£ 0.6) | 6.8 (+2.7) 0.3 (+ 0.1) 1.8 (£ 1.5)
Debias w/o DT | 81.66 2.4 (£ 0.0) 15.0 (£ 0.0) 9.2 (£ 0.0) 1483.0 (£ 0.0) 62.8 (£ 0.0) 2.0 (£ 0.0)
Debias w DT 81.66 24 (£ 0.0) 14.2 (+ 0.5) 9.2 (£ 0.1) 1111.5 (£ 718.5) 47.1 (£ 30.4) 9.8 (£ 9.8)
BMI Original 90.63 9.5 (£ 1.5) 9.0 (£ 0.0) 5.2 (£ 0.6) 5357.6 (£ 391.0) 572 (£ 6.2) 28.3 (£ 7.9)
Original w DT | 90.63 100 (= 1.5) | 5.8 (£ 0.4) 4.7 (£ 04) 21.8 (£ 4.8) 0.2 (£ 0.1) 2.6 (+2.9)
Debias w/o DT | 90.11 5.9 (£ 0.0) 9.0 (£ 0.0) 6.1 (£ 0.0) 335.5 (£ 57.3) 5.6 (£ 0.9) 26.0 (£ 7.1)
Debias w DT 90.11 4.1 (£ 0.7) 8.5 (£ 0.6) 5.8 (£ 04) 136.8 (£ 116.6) 3.5 (£ 3.0) 10.8 (£ 6.6)
BM2 Original 90.27 11.3 (£ 0.0) | 9.0 (£ 0.0) 4.6 (£ 1.1) 730.0 (£ 195.9) 6.5 (+ 1.7) 18.4 (£ 5.8)
Original w DT | 90.63 11.3 (£ 0.0) | 84 (£ 0.5) 5.1 (£ 0.8) 727.2 (£ 760.7) 6.4 (+ 6.7) 5.5 (£ 8.7)
Debias w/o DT | 89.86 11.3 (£ 0.0) | 9.0 (£ 0.0) 6.0 (£ 0.0) 2168.5 (£ 34.6) 19.2 (£ 0.3) 53.5 (£ 0.7)
Debias w DT 89.86 7.2 (£ 5.8) 4.5 (£ 6.4) 29 (+42) 750.5 (£ 1061.4) 6.6 (+9.4) 9.0 (£ 12.7)
BM3 Original 90.35 11.3 (£ 0.1) | 9.0 (£ 0.0) 6.5 (£ 0.9) 2988.4 (£ 311.6) 26.5 (£ 2.9) 422.8 (£ 128.3)
Original w DT | 90.35 11.3(x£0.1) | 7.2 (£ 04) 5.3 (£ 0.9) 12.9 (+ 9.9) 0.1 (£ 0.1) 3.5 (£ 2.5)
Debias w/o DT | 90.17 6.7 (£ 1.0) 9.0 (£ 0.0) 7.8 (£ 0.0) 1296.5 (£ 207.2) 19.2 (£ 0.2) 386.0 (£ 91.9)
Debias w DT 90.17 54 (£ 1.3) 9.0 (£ 0.0) 7.5 (£ 0.0) 326.0 (+ 387.2) 5.5 (£ 6.4) 76.2 (£ 90.3)
BMS Original 90.26 102 (£ 1.7) | 6.0 (+ 0.0) 3.7 (£ 0.5) 1608.0 (£ 248.6) 16.0 (£ 2.4) 25.1 (£ 22.4)
Original w DT | 90.26 11.3 (£ 0.0) | 5.0 (£ 0.0) 4.1 (+ 0.0) 520.0 (£ 17.9) 4.6 (£ 0.2) 150.0 (£ 19.7)
Debias w/o DT | 89.81 10.2 (£ 0.0) | 9.0 (£ 0.0) 4.7 (£ 0.0) 264.0 (£ 26.9) 2.6 (£ 0.3) 2.0 (£ 0.0)
Debias w DT 89.81 10.2 (£ 0.0) | 6.5 (+ 4.4) 3.5 (23 182.2 (+ 121.6) 1.8 (£ 1.2) 3.8 (+49)
BM6 Original 89.89 11.3 (£ 0.0) | 8.0 (£ 0.0) 3.4 (£ 0.0) 2315.0 (£ 328.3) 20.5 (£ 2.9) 21.5 (£ 13.1)
Original w DT | 89.89 11.3 (£ 0.0) | 6.0 (+ 0.0) 2.6 (£ 0.0) 608.2 (+ 38.1) 54 (£ 0.3) 26.8 (+ 4.7)
Debias w/o DT | 89.03 11.3 (£ 0.0) | 9.0 (+ 0.0) 6.1 (£ 0.0) 2902.5 (£ 16.3) 25.7 (£ 0.1) 56.0 (+ 2.8)
Debias w DT 89.03 11.3 (£ 0.0) | 8.8 (£ 0.5) 6.4 (£ 04) 1963.2 (£ 1346.0) | 17.4 (£ 11.9) 32.8 (£ 21.9)
BMS Original 90.07 0.3 (£ 4.7) 8.0 (+ 0.0) 4.8 (£ 0.1) 41.8 (+ 4.4) 16.5 (£ 3.5) 42 (£ 1.5)
Original w DT | 90.07 0.3 (£ 0.1) 5.0 (£ 0.0) 3.9 (£ 0.2) 26.2 (£ 4.0) 10.2 (£ 1.6) 4.5 (£ 1.7)
Debias w/o DT | 90.22 3.8 (£ 3.0 3.0 (£4.2) 3.0 (£ 4.2) 0.5 (£ 0.7) 0.0 (£ 0.0) 0.5 (£ 0.7)
Debias w DT 90.22 5.6 (£ 2.0) 0.0 (£ 0.0) 0.0 (£ 0.1) 0.1 (£ 0.1) 0.0 (£ 0.0) 0.2 (+0.2)

[9]] to obtain debiased models. Table [[V|shows the comparison
between the original and debiased models with and without
decision tree rules. Overall, the debiased models led to at most
2% reduction in the accuracy. We apply simulated annealing
(SA) to search for unfairness in the mitigated models, similar
to the original ones. We find that adding the decision tree
rules to the original models outperform other techniques in
reducing the maximum k-discrimination in 67% of cases. The
debiased models with and without DT achieved better results
in 22% and 11% of cases, respectively. Similarly, adding DT
rules to the original models reduce the success rates of finding
individual discrimination cases in 67% of cases where the
debiased models with DT achieved better results in 28% of
cases. When considering the average k-discrimination of ID
samples, both original and debiased models with DT tie by
reducing it in 39% of cases.

One interesting and unexpected outcome is that while
the debiased models reduce the Swucc.rate and #I1D, they
often increase Max.K value. This shows that reducing k-
discrimination with simple retraining strategies does not work
and requires careful retraining and novel strategies. While
adding decision tree rules help, we believe that retraining
introduces new fairness vulnerabilities that require further
iteration of HYFAIR to infer new discriminatory rules. We
believe that more in-depth future research is necessary for
debiasing k-discrimination bugs in the models.

Answer RQ4: Applying decision rules as guardrails for
denying output in more sensitive cases with the origi-
nal model (67%) and retrained models (22%) reduces k-
discrimination metrics in 89% of cases.

VI. DISCUSSION

Limitation. In this work for generating counterfactuals, we
perturb for all possible combinations of the protected attribute
which might lead to some unrealistic or imaginary counter-
factual instances. We use some rule-of-thumb relationships to
mitigate this issue (e.g., a married individual with a female
gender cannot be husband for the relationship attribute), but
Conditional GANs and Variational Auto Encoders can be
employed to improve the realism of samples [44].

Our current technique also does not handle intersectional
fairness [45]], [46l, [47], which reveals unfairness in the
combination of multiple protected attributes. To overcome this
limitation, our proposed approach can be repeated multiple
times (one per each combination) to certify fairness or find
the maximum unfairness.

Threat to Validity. To ensure the validity of our experiments
and the reproducibility and valid conclusion, we follow estab-
lished rules and guidelines and take the average of the repeated
experiments to validate our claims. To ensure that our results
are generalizable and address external validity, and apply to
multiple datasets, we experiment on 20 DNN models taken
from the literature of fairness testing and the real world in
Kaggle and use 2 different datasets. Our certification is limited
to a given fairness notion, bounded to a time-out, and sensitive

to seed selection. Hence, we may not guarantee fairness in
general. Decision tree algorithms have the limitation of hyper-
rectangular partitioning and may not show the causal relation-
ships between input features and discriminatory instances.

VII. RELATED WORK

Verifying Fairness Properties. Multiple prior works used
formal techniques to certify fairness in the ML models [48]],
18], [Z], [6], [49], [50]. FAIRIFY [6] addressed the fairness
verification problem of neural networks for individual fairness.
They formulate pre-trained DNNs via Satisfiability modulo
theories (SMT), and either certify the DNN for individual fair-
ness or find a counterexample that is an instance of individual
discrimination. However, these approaches cannot distinguish
between counterexamples, which are critical for prioritizing
counterexamples and explaining patterns in fairness bugs.
Testing Fairness Properties. Multiple research works [30],
(8], [S1, [32], [S2] consider testing the individual dis-
crimination in non-neuron ML models. THEMIS [30], AE-
QUITAS [9], ADF [10], AFT [42], EXPGA [43], NEU-
RONFAIR [11], and EIDIG [53]] used causal fairness definition
(different variants of 2-fairness notions) that may not prioritize
test cases and quantify different risks of harm. DICE [20]]
employs an information theory-based method to quantify in-
dividual discrimination. However, DICE cannot guarantee the
absence of unfairness. We use formal techniques to certify
fairness and explain the root cause of bugs.

eXplainable AI. PARFAIT-ML [54] used decision trees to
explain what hyperparameter configuration of ML libraries
can lead to inferring unfair ML models. Mothilal et al.
[S5] provided diverse counterfactual explanations for a given
decision subject that enables them to flip an ML decision
outcome. Watcher et al. [56] focused on understanding the
decision flip by the feature-perturbed version of the same
individual. LORE [57]] used a decision tree to approximate
the non-linear models, whereas ANCHORS [58]] used model-
agnostic explanations based on if-then rules. HYFAIR is geared
towards DNN software, and it goes beyond i) explanation of
decision for one subject and ii) prevalent differential analysis.

VIII. CONCLUSION

This paper presented a hybrid framework for fairness anal-
ysis of neural networks by combining testing and verification
techniques. We introduced a quantitative generalization of
individual discrimination and proposed a method to explain
the conditions under which DNN models exhibit significant
clustered discrimination. Our approach supports both the de-
tection and mitigation of such fairness violations. An important
direction for future work is to systematically assess the risk
posed by automated decision-support systems when a small
number of marginalized groups receive unfavorable outcomes,
even as the system appears fair to the majority.
Acknowledgment. The authors thank ASE reviewers for their
time and invaluable feedback to improve this work. This
project has been supported by NSF under Grant No. CNS-
2230060, CNS-2527657, CNS-2230061, and CCF-2317207.

[1]
[2]
[3]
[4]
[5]

[6]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

REFERENCES

I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. http://www.deeplearningbook.org.
R. Berk and J. Bleich, “Forecasts of violence to inform sentencing
decisions,” Journal of Quantitative Criminology, vol. 30, pp. 79-96,
2014.

G. Siocon, “Ways ai is changing hr departments,” 2023.

R. Gusmano, “How ai is adding faster funding and efficiency to small-
business lending,” 2024.

J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy
disparities in commercial gender classification,” in Conference on fair-
ness, accountability and transparency, pp. 77-91, PMLR, 2018.

S. Biswas and H. Rajan, “Fairify: Fairness verification of neural net-
works,” in Proceedings of the 45th International Conference on Software
Engineering, ICSE 23, p. 15461558, IEEE Press, 2023.

H. Khedr and Y. Shoukry, “Certifair: A framework for certified global
fairness of neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, pp. 8237-8245, 2023.

A. Agarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Automated
test generation to detect individual discrimination in ai models,” arXiv
preprint arXiv:1809.03260, 2018.

S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness
testing,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 98-108, 2018.

P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
and T. Dai, “White-box fairness testing through adversarial sampling,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, pp. 949-960, 2020.

H. Zheng, Z. Chen, T. Du, X. Zhang, Y. Cheng, S. Ti, J. Wang, Y. Yu, and
J. Chen, “Neuronfair: Interpretable white-box fairness testing through
biased neuron identification,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), pp. 1519-1531, 2022.

J. Chakraborty, S. Majumder, and T. Menzies, “Bias in machine learn-
ing software: Why? how? what to do?,” in Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2021, (New York, NY, USA), p. 429440, Association for Computing
Machinery, 2021.

Z.Chen, J. M. Zhang, F. Sarro, and M. Harman, “Maat: a novel ensemble
approach to addressing fairness and performance bugs for machine
learning software,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, (New York, NY, USA),
p. 1122-1134, Association for Computing Machinery, 2022.

K. Peng, J. Chakraborty, and T. Menzies, “Fairmask: Better fairness via
model-based rebalancing of protected attributes,” 2022.

S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learn-
ing: Limitations and Opportunities. MIT Press, 2023.

K. Creel and D. Hellman, “The algorithmic leviathan: Arbitrariness,
fairness, and opportunity in algorithmic decision-making systems,”
Canadian Journal of Philosophy, vol. 52, no. 1, pp. 2643, 2022.

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in Proceedings of the 3rd innovations in theoretical
computer science conference, pp. 214-226, 2012.

A. Albarghouthi, L. D’ Antoni, S. Drews, and A. V. Nori, “Fairsquare:
probabilistic verification of program fairness,” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, pp. 1-30, 2017.

M. J. Kusner, J. Loftus, C. Russell, and R. Silva, “Counterfactual
fairness,” Advances in neural information processing systems, vol. 30,
2017.

V. Monjezi, A. Trivedi, G. Tan, and S. Tizpaz-Niari, “Information-
theoretic testing and debugging of fairness defects in deep neural
networks,” 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 1571-1582, 2023.

Y. Li, J. Wang, and C. Wang, “Certifying the fairness of KNN in
the presence of dataset bias,” in Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, July 17-22, 2023,
Proceedings, Part Il (C. Enea and A. Lal, eds.), vol. 13965, pp. 335-357,
Springer, 2023.

J. Wang, Y. Li, and C. Wang, “Synthesizing fair decision trees via
iterative constraint solving,” in Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022,

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Proceedings, Part II (S. Shoham and Y. Vizel, eds.), vol. 13372 of
Lecture Notes in Computer Science, pp. 364-385, Springer, 2022.

M. Fischetti and J. Jo, “Deep neural networks and mixed integer linear
optimization,” Constraints, vol. 23, no. 3, pp. 296-309, 2018.

A. Kampmann, N. Havrikov, E. O. Soremekun, and A. Zeller, “When
does my program do this? learning circumstances of software behavior,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, (New York, NY, USA), p. 1228-1239,
Association for Computing Machinery, 2020.

K. Gaaloul, C. Menghi, S. Nejati, L. C. Briand, and D. Wolfe, “Min-
ing assumptions for software components using machine learning,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 159-171, 2020.

M. T. Ribeiro, S. Singh, and C. Guestrin, “’why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, (New York, NY, USA), pp. 1135-1144, Association for
Computing Machinery, 2016.

“EthicalML-XAI: An explainability toolbox for machine learning.”
https://github.com/EthicalML/xai, 2024. online.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

N. Yu, L. Carreon, G. Tan, and S. Tizpaz-Niari, “Fairlay-ml: Intuitive
debugging of fairness in data-driven social-critical software,” in 2025
IEEE/ACM 47th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 25-28, IEEE, 2025.
R. Angell, B. Johnson, Y. Brun, and A. Meliou, “Themis: Automatically
testing software for discrimination,” in Proceedings of the 2018 26th
ACM Joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pp. 871-875,
2018.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.

M. Fan, W. Wei, W. Jin, Z. Yang, and T. Liu, “Explanation-guided
fairness testing through genetic algorithm,” in Proceedings of the 44th
International Conference on Software Engineering, ICSE 22, (New
York, NY, USA), p. 871-882, Association for Computing Machinery,
2022.

D. Gopinath, G. Katz, C. S. Pasdreanu, and C. Barrett, “Deepsafe: A
data-driven approach for assessing robustness of neural networks,” in
Automated Technology for Verification and Analysis: 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018,
Proceedings 16, pp. 3—19, Springer, 2018.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Towards proving the adversarial robustness of deep neural networks,”
arXiv preprint arXiv:1709.02802, 2017.

N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh,
“Verifying properties of binarized deep neural networks,” in AAAI’IS,
2018.

S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NASA Formal Meth-
ods Symposium, pp. 121-138, Springer, 2018.

V. A. Dasu, A. Kumar, S. Tizpaz-Niari, and G. Tan, “Neufair: Neural
network fairness repair with dropout,” in Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pp. 1541-1553, 2024.

S. Biswas and H. Rajan, “Do the machine learning models on a crowd
sourced platform exhibit bias? an empirical study on model fairness,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, (New York, NY, USA), p. 642-653,
Association for Computing Machinery, 2020.

P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
and T. Dai, “White-box fairness testing through adversarial sampling,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ICSE 20, (New York, NY, USA), p. 949-960,
Association for Computing Machinery, 2020.

C. Urban, M. Christakis, V. Wiistholz, and F. Zhang, “Perfectly parallel
fairness certification of neural networks,” Proc. ACM Program. Lang.,
vol. 4, nov 2020.

D. Mazzucato and C. Urban, “Reduced products of abstract domains
for fairness certification of neural networks,” in Static Analysis: 28th

http://www.deeplearningbook.org
https://github.com/EthicalML/xai

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

International Symposium, SAS 2021, Chicago, IL, USA, October 17-19,
2021, Proceedings, (Berlin, Heidelberg), p. 308-322, Springer-Verlag,
2021.

Z. Zhao, T. Toda, and T. Kitamura, “Approximation-guided fairness
testing through discriminatory space analysis,” in Proceedings of the
39th IEEE/ACM International Conference on Automated Software En-
gineering, ASE ’24, (New York, NY, USA), p. 1007-1018, Association
for Computing Machinery, 2024.

M. Fan, W. Wei, W. Jin, Z. Yang, and T. Liu, “Explanation-guided
fairness testing through genetic algorithm,” in Proceedings of the 44th
International Conference on Software Engineering, ICSE °22, (New
York, NY, USA), p. 871-882, Association for Computing Machinery,
2022.

Y. Xiao, A. Liu, T. Li, and X. Liu, “Latent imitator: Generating natural
individual discriminatory instances for black-box fairness testing,” in
Proceedings of the 32nd ACM SIGSOFT international symposium on
software testing and analysis, pp. 829-841, 2023.

M. Zhang and J. Sun, “Adaptive fairness improvement based on causality
analysis,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2022, (New York, NY, USA), p. 6-17,
Association for Computing Machinery, 2022.

Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, ‘“Fairness improvement
with multiple protected attributes: How far are we?,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
ICSE 24, (New York, NY, USA), Association for Computing Machin-
ery, 2024.

A. Ghosh, L. Genuit, and M. Reagan, “Characterizing intersectional
group fairness with worst-case comparisons,” in Proceedings of 2nd
Workshop on Diversity in Artificial Intelligence (AIDBEI) (D. Lamba
and W. H. Hsu, eds.), vol. 142 of Proceedings of Machine Learning
Research, pp. 22-34, PMLR, 09 Feb 2021.

P. G. John, D. Vijaykeerthy, and D. Saha, “Verifying individual fairness
in machine learning models,” in Conference on Uncertainty in Artificial
Intelligence, pp. 749-758, PMLR, 2020.

B. H. Kim, J. Wang, and C. Wang, “Fairquant: Certifying and quanti-
fying fairness of deep neural networks,” 2024.

V. Monjezi, A. Kumar, G. Tan, A. Trivedi, and S. Tizpaz-Niari, “Causal
graph fuzzing for fair ml sofware development,” in Proceedings of the
2024 IEEE/ACM 46th International Conference on Software Engineer-
ing: Companion Proceedings, pp. 402-403, 2024.

A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black box
fairness testing of machine learning models,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, p. 625-635, 2019.

V. Monjezi, A. Trivedi, V. Kreinovich, and S. Tizpaz-Niari, “Fairness
testing through extreme value theory,” in 2025 IEEE/ACM 47th Interna-
tional Conference on Software Engineering (ICSE), pp. 607-607, IEEE
Computer Society, 2025.

L. Zhang, Y. Zhang, and M. Zhang, “Efficient white-box fairness testing
through gradient search,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2021, (New York, NY, USA), p. 103-114, Association for Computing
Machinery, 2021.

S. Tizpaz-Niari, A. Kumar, G. Tan, and A. Trivedi, “Fairness-aware
configuration of machine learning libraries,” in Proceedings of the 44th
International Conference on Software Engineering, pp. 909-920, 2022.
R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proceedings
of the 2020 Conference on Fairness, Accountability, and Transparency,
FAT* °20, (New York, NY, USA), p. 607-617, Association for Comput-
ing Machinery, 2020.

S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the gdpr,”
2018.

R. Guidotti, A. Monreale, S. Ruggieri, D. Pedreschi, F. Turini, and
F. Giannotti, “Local rule-based explanations of black box decision
systems,” 2018.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: high-precision
model-agnostic explanations,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innova-
tive Applications of Artificial Intelligence Conference and Eighth

AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAT 18/IAAT’ 18/EAAT’18, AAAI Press, 2018.

	Introduction
	Overview
	The Discrimination Clustering Problem
	HyFair for Discrimination Analysis
	Experiments
	Discussion
	Related Work
	Conclusion
	References

